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Executive Summary 
Background 
Commercial buildings need approaches that continuously characterize energy performance to (1) 
provide timely responses to excess energy use by building operators; and (2) enable building 
occupants to develop energy awareness and to actively reduce energy use.  Energy information 
systems, many of which involve graphical dashboards, are gaining popularity for presenting 
(near) real-time energy performance metrics to occupants and operators.  NREL researchers 
developed Building Agent, which incorporates a dashboard, for these purposes. 

Each building is, by virtue of its purpose, location, and construction, unique.  Thus, building 
energy performance can be assessed in a relative sense only, as comparison of absolute energy 
use out of context is not meaningful.  In some cases, performance can be judged relative to the 
average performance of comparable buildings.  However, in high-performance building designs, 
such as NREL’s Research Support Facility (RSF), relative performance is meaningful only when 
it is compared to the facility’s historical performance or to its theoretical maximum performance 
as estimated through detailed energy modeling. 

Development Process and Results 
The report presents three different but related approaches to determine performance bounds on 
building energy performance for display on an energy information system: 

• Engineering judgment-informed curve fitting  

• Frequency of occurrences  

• Quantile regression. 
Electricity consumption for cooling provided by chilled water was considered the energy end use 
of choice to illustrate the process.  Yet, other energy end uses such as heating, lighting, plug 
loads, mechanical systems (fans and pumps), and even photovoltaic power generation may be 
analyzed identically. 

In the first approach, using engineering judgment and manual curve fitting, end-use control 
limits were derived using static lookup-based performance targets, combined with polynomial 
curve-fit models.  These control limits were developed based on a combination of historical end-
use data and as-built energy modeling; single main effect variables were selected for each end 
use, such as solar irradiance for lighting performance. 

The RSF uses hot water and chilled water from the campus district energy plant.  Hot water and 
chilled water meters measure the RSF’s thermal energy use and chilled water efficiency 
(kW/ton).  Natural gas boiler efficiencies are applied to the metered thermal energy use to 
calculate system energy end uses.  For heating and cooling end uses, the outdoor air dry-bulb 
temperature is the dominant environmental variable.  NREL researchers compared the modeled 
hourly cooling energy use to the outdoor dry-bulb temperature to develop minimum and 
maximum control limits through visual inspection for occupied and unoccupied hours.  Linear 
curve fits based on the modeled cooling performance were then provided to the Building Agent 
(Figure ES–1) and cooling acceptance ranges were calculated and compared to measured cooling 
energy use.  The heating control limits were derived with similar methods based on outdoor dry-
bulb temperature as the single main effect variable. 
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Figure ES–1  Modeled hourly cooling with weekday and weekend control limits 

These first-order curve fits for acceptable control limits (based on the as-built model prediction 
for cooling energy use) successfully predicted actual cooling energy use (Figure ES–2) for RSF I 
for 2011.  Setting end-use budgets, and tracking actual energy use in real time against these 
budgets, have enabled us to realize net-zero design expectations for the RSF. 
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Figure ES–2 Measured and modeled hourly cooling 

This manual curve fit process provided first-order control limits; however, this visual inspection 
method has limitations and an automated process is valuable.  Cooling energy use is not always 
best predicted based on occupancy state and outdoor dry-bulb temperature; outdoor humidity and 
solar gains can also contribute significantly to cooling energy use.  These limitations suggest the 
need for developing better methods for automating these control limit curve fits and including 
multiple dominant variables.  Descriptions of these two enhanced methods and the improvements 
are presented here. 

In the second frequency-based approach, measured building end use energy data are used to 
develop empirical frequency distributions for each end use as a function of the dominant 
independent variable, which is determined from visual inspection and a pairwise correlation 
analysis.  Appropriate control limits were defined as ranges in which a certain percentage of end-
use consumption—here the central 50% of observations between the 25th and 75th percentiles—
has been observed historically as a function of the dominant independent variable (Figure ES–3.  
The box plots shown in this report adopt the common notation that the box occupies the 
interquartile range (IQR) from the lower (25th percentile) to the upper (75th percentile).  The 
whiskers extend to the minimum and maximum values if these are less than 1.5 times the IQR 
below the lower or 1.5 times the IQR above the upper quartile.  Larger and smaller values, 
respectively, are shown as outliers. 
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Figure ES–3 Measured cooling energy end use versus ambient temperature for occupied 
summer hours 

The same process is then applied to simulated energy end-use data sourced from a calibrated 
building energy model (Figure ES–4. 

 
Figure ES–4 Modeled cooling energy end use versus ambient temperature for occupied 

summer hours 
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Two sets of upper control limits (UCLs) and lower control limits (LCLs) are generated from 
measured and simulation-based data.  An energy-conservative control logic is then applied to 
select one set of control limits in each situation:  The model’s suggested range is considered 
invalid whenever the lower observed limit is greater than the upper model limit or when the 
upper observed limit is smaller than the lower model limit.  The model is considered valid in all 
other cases.  If the model is invalid, the observed range is applied.  Presuming the model can be 
considered valid, the LCL is the lesser of either the lower model or lower observed limit and the 
UCL is the lesser of either the upper model or upper observed limit. 

This set of LCLs and UCLs for each energy end use was adopted in Building Agent for 
presentation to building operators and occupants (see Table ES–1) for the case of cooling energy 
end use. 

Table ES–1 Cooling Energy End-Use LCLs and UCLs (kW) Versus Ambient Temperature (°C) 
for Occupied Hours 

Bin 
(–17, 
–13) 

(–13, 
–9) 

(–9, 
–5 

(–5, 
–1) 

(–1, 
3) 

(3, 
7) 

(7, 
11) 

(11, 
15) 

(15, 
19) 

(19, 
23) 

(23, 
27) 

(27, 
31) 

(31, 
35) 

1st Quartile 0 0 0 0 0 0 0 0 2 7 11 22 20 
3rd Quartile 0 0 0 0 0 2 2 3 7 20 40 49 78 

 
The control limit tables shown in Table ES–1 were implemented in the Building Agent’s 
dashboard system.  Figure ES–5 shows the instantaneous cooling energy end use and Figure ES–
6 shows the historical development.  The gray band in Figure ES–5 and Figure ES–6 is defined 
by the LCLs andUCLs developed in this report.  Although the realities of actual building control 
are not represented in the mode (Figure ES–6), the general performance trends are captured 
sufficiently well. 

 
Figure ES–5 Dashboard view of instantaneous total cooling power (kW) in the RSF  

along with LCLs and UCLs shown as a gray band above 
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Figure ES–6 Dashboard view of historical total cooling power (kW) (blue) development in the 

RSF along with control limits 

A more universal methodology that could harness all the available covariates of an energy end 
use was desired to predict UCLs and LCLs as a function of all the relevant independent variables 
instead of just the dominant one.  In essence, a methodology was needed that can be applied to 
any situation where control limits on energy end use were needed, whether a sophisticated 
monitoring system with dozens of available variables or a system with only a few monitored 
points. 

Therefore, the third quantile regression-based approach, the building energy end use, was 
modeled linearly in terms of other end uses, exogenous variables, and weather data, all of which 
were transformed to orthogonal principal components.  The linear models were used to generate 
control limits using quantile regression of measured and simulated data.  In this report, quantile 
regression was used to predict the 40th and 60th quantiles.  The same energy-conservative control 
logic was then applied to the two sets of quantile regression-based control limits (Figure ES–7) 
for a summer week, where LCL is the lower control limit, UCL is the upper control limit, and 
“Data” is the observed cooling consumption.  Figure ES–7 shows that the actual consumption is 
often higher than the 60th percentile, indicating that the actual consumption is on the high side of 
the expectation. 
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Figure ES–7 Summer week cooling UCLs (red) and LCLs (green) along with measured cooling 

end use versus hour of the week 

Because dashboard users can view an expected range of energy end use consumption in addition 
to the current instantaneous value, they can draw conclusions about the relative energy intensity.  
If the current value falls within the expected range, the building energy end use can be 
considered acceptable, meaning it requires no action from facility operators or occupants.  
Alternatively, if the energy use exceeds the UCL, the dashboard indicates opportunities for 
energy savings.  The greater the departure, the more significant the savings potential will likely 
be. 

The first approach shows engineering judgment-based control limits; the second and third 
approaches present more energy-conservative control limits based on comparisons of modeled 
and observed data.  Each method encourages occupants and operators to maintain the building’s 
energy performance in a more energy-conservative state. 
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Nomenclature 
BIC Bayesian Information Criterion 
COP coefficient of performance 
CSV comma separated values file 
DOE U.S. Department of Energy 
DW Durbin-Watson statistic 
ESIF Energy Systems Integration Facility 
EUI energy use intensity 
LCL lower control limit 
LPD lighting power density 
LQM  lower quartile modeled 
LQO lower quartile observed  
NREL National Renewable Energy Laboratory 
OLS ordinary least squares  
PC principal component 
PCA principal component analysis 
PV photovoltaic 
Q-Q plot quantile-quantile plot 
RSF Research Support Facility 
TMY3 Typical Meteorological Year 3 weather data 
UCL upper control limit 
UQM  upper quartile modeled 
UQO  upper quartile observed 
WE weekend 
WD weekday 
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1.0 Introduction 
1.1 Motivation 
As net-zero energy building procurement matures, the endeavor expands from realizing 
aggressive energy goals in design to maintaining designed performance over the life of the 
building.  Changes in occupancy patterns, miscellaneous loads, space use type, and installed 
equipment performance can significantly impact year-to-year energy performance.  In one 
possible building lifetime scenario, energy use increases over time as equipment is added or 
operational schedules change.  In another, energy use decreases over time as equipment degrades 
or fails, typically at the expense of occupant comfort.  The ideal scenario is that equipment is 
maintained and upgraded appropriately.  These actions reduce energy consumption and maintain 
occupant comfort for each year of operation (accounting for variations in weather and other 
external factors). 

The underlying principal shortcoming is a disconnect between the performance expectations and 
predictions created during the building’s design and the reality that unfolds during building 
operation.  Assuming realistic expectations for energy consumption were set during the design 
process—based on the emerging understanding of predictive energy modeling—the charge at 
hand is to first establish and then continuously monitor budgets for each end use.  To accomplish 
this charge, an interface between the building, the occupants, and the operational staff is needed 
for fact-based, proactive decision-making.   

Like energy models in design, energy dashboards have surfaced as the primary interfaces 
between the building and the decision-makers.  Many dashboard visualizations are paired with a 
single energy goal, such as net-zero energy, which is sufficient if no problems are encountered; 
however, this approach does not provide direction for corrective action if the goal is not met.  
The premise of this research is to develop a dashboard that does not oversimplify the design-
based energy model results but rather disentangles them for ongoing analysis by building 
decision-makers.  The result is a more complex dashboard architecture that provides a deeper 
understanding of the building’s operation, as illustrated through the U.S.  Department of 
Energy’s (DOE) National Renewable Energy Laboratory (NREL) campus dashboard and 
occupant interface, the Building Agent. 

1.2 NREL Campus Background 
The DOE/NREL goal for the campus is to expand its leadership as a state-of-the-art laboratory 
that supports innovative research, development, and commercialization of renewable energy and 
energy efficiency technologies that address the nation’s energy and environmental needs.  Its 
recent growth has resulted in a significant increase in employees and facilities on its 327-acre 
(1.32 km2) main campus in Golden, Colorado.   

To support this growth over the last 5 years, NREL developed and demonstrated new 
construction procurement methods that proved cost effective and showed that 50% energy 
savings over typical building code are possible when design-build teams integrate to achieve 
specific and measurable whole-building energy goals.  NREL facility growth provided an 
opportunity to demonstrate the integrated approach in real projects by incorporating energy 
performance specifications into the projects’ contracts, as documented through predictive 
modeling.  NREL developed and piloted this energy performance-based design-build process in 
2008 with the Research Support Facility (RSF I), an 824-occupant, 220,000-ft2 (20,500 m2) 
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office building.  The process has since been replicated on other campus projects such as an office 
wing expansion, the Research Support Facility II (RSF II), the Energy Systems Integration 
Facility (ESIF), a parking structure, and a site entrance building. 

Each project employed contractual energy use requirements in the design-build contracts to 
incorporate world-class efficiency strategies, all on typical DOE construction budgets.  In 
addition to general energy reduction goals such as a 50% reduction versus typical building code 
and sustainability goals such as Leadership in Energy and Environmental Design Platinum 
certification, the contracts included specific and directly measurable site energy use 
requirements: 

• RSF I:  36 kBtu/ft2/yr (11 kWh/m2/yr) site energy use intensity (EUI) and net-zero 
energy, including the data center 

• RSF II:  33 kBtu/ft2/yr (10 kWh/m2/yr) site EUI and net-zero energy 

• ESIF:  27 kBtu/ft2/yr (9 kWh/m2/yr) site EUI for the office space, and 1.06 power usage 
effectiveness for the data center 

• Parking structure:  175 kBtu/parking space/yr (51 kWh/parking space/yr) 

• Site entrance building:  32 kBtu/ft2/yr (10 kWh/m2/yr) EUI and net-zero energy. 
Each project’s design-build team successfully designed and constructed these buildings to reach 
the contractual energy goals, substantiated by energy models and submetering during the first 
year of operation.  Based on the successful first year of operation vis-à-vis the performance 
specification, additional monetary rewards were paid to the design-build team in excess of the 
base contract value as an incentive for the commitment to this novel delivery process.  NREL 
terms this contractual energy goal substantiation effort, combined with energy goal maintenance 
over the life of the building, energy performance assurance. 

1.3 Energy Performance Assurance 
In each of NREL’s recent campus construction projects, whole-building energy models were 
started in the predesign phase by each proposing design-build team to prove that its design 
concepts were likely to meet the contractual goals (Pless et al. 2011).  The design-based energy 
models evolved over the design phases and were updated based on constructed reality.  This 
energy performance assurance task differs from a typical design process in that information from 
the design-based energy model was used to make iterative decisions about the building design 
and to understand cost and energy performance tradeoffs versus simply verifying that design 
concepts perform as expected at the end of design. 

The first step in energy performance assurance is to advance energy model applications 
throughout the design and construction industry.  Specifically, this means continually refining 
building geometry, internal loads, weather input, occupancy schedules, etc.  For the NREL 
campus, energy modeling reports were provided at each phase of design and as energy-cost 
tradeoff questions arose, with clearly identified variables such as input schedules that the 
integrated owner, design, and construction team could discuss.  The final advancement of the 
energy modeling process resulted in an as-built energy model that forms the basis of the 
operational energy performance expectations.   
The second step is submetering.  This requires the team to consider the electrical design in order 
to lay out meters appropriately to make end-use disaggregation available for validating the 
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design-based energy models.  For each NREL project, submetering was an explicit contractual 
requirement, beyond the implicit contractual need to verify the energy goal at occupancy. 

These first two steps are critical to setting up a building-human interface such as a dashboard that 
allows for ongoing, proactive decision-making and energy end use budget tracking.   

The final step—and the focus of this work—is to set up such a building-human interface.  This 
effort includes defining the system architecture for data collection and designing system 
visualizations that allow humans—including occupants, facility managers, information 
technology managers, and owners—to make evidence-based and goal-driven decisions.   

NREL’s building-human interface, developed in tandem with the recent campus construction, is 
called Building Agent.  The following Building Agent description focuses on the RSF 
(combination of RSF I and II with a total of 360,000 ft2 or 33,600 m2), because the building has 
been operational for more than 1 year and provides a fuller picture of the effort required to 
maintain energy performance.  The RSF was the living laboratory for Building Agent 
development and continues to be the platform for further enhancements. 

This work builds on Long et al. (2013) in that a wider range of approaches to determining the 
energy end-use control limits is developed and implemented. 

1.4 Comments on Units 
Please note that SI units are used for all data analysis and IP units are used for public 
presentation of the dashboard. 
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2.0 Building Agent System Design 
The overarching aim for the Building Agent (Schott et al. 2012) is to create cohesion between 
building automation systems, local energy use measurements, and occupant feedback to provide 
visualizations that empower occupants, facility managers, and building engineers to take 
diagnostic, proactive, energy-saving, and comfort-improving actions.  The Building Agent 
architecture consists of central server, measurement, and distributed application and visualization 
layers. 

The visualization scope of the Building Agent extends beyond a typical energy dashboard:  It 
collects and displays energy performance data and allows facility managers and typical 
occupants to analyze and investigate the balance of energy use, energy expenditures, and 
comfort.  The later portion of this report emphasizes the analysis underlying the Building Agent 
visualization. 

2.1 Building Agent Architecture 
The Building Agent architecture consists of four layers:  hardware and protocols, databases, 
applications, and visualizations.  Figure 2–1 defines the layer components and color-codes them 
according to those developed uniquely for Building Agent (“Building Agent” and 
“Visualizations”) and shared campus resource (“Databus”). 

 
Figure 2–1 Building Agent architecture 

The first application layer addresses the spatially distributed devices and varied protocols for 
monitoring energy- and comfort-related events on campus.  Elements of this layer include (but 
are not limited to): 

• Power quality meters such as lighting, mechanical, miscellaneous loads, elevators, and 
photovoltaic (PV) panels (Modbus protocol) on each building subsystem 

• Flow meters on hot and chilled water, temperature, and carbon dioxide gauges in the 
building (BACnet protocol) 
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• Spatially distributed environmental sensors (called phidgets), such as illuminance, 
temperature, and humidity sensors at individual workstations 

• Other protocols such as weather station sensors, including global horizontal and vertical 
irradiance, dry-bulb temperature, and wind speed and direction 

• Client applications deployed to collect occupant feedback.  Occupants are considered 
meters with many sensors in the Building Agent architecture. 

All the devices either send data or are polled by a second database layer, at a time interval 
appropriate to the rate of change of the condition being measured.  For example, environmental 
sensors send information either every 10 minutes or when occupants at workstations provide 
feedback about their comfort.  The power meters are set to send data at 1-minute intervals.  All 
these data are collected, aligned, cleansed, aggregated, and tagged in two databases for use by 
the Building Agent applications.  One database, Databus, houses raw building performance data.  
These data are open and available for a variety of NREL research and assessment needs.  A 
second database, specific to and named for Building Agent, houses metadata for the raw Databus 
data used for campus dashboards.  The Building Agent database also segregates private occupant 
data such as comfort feedback. 

The third and fourth layers of the Building Agent architecture go hand-in-hand.  The relevant 
data are organized and manipulated and then displayed via a dashboard.  The up-to-date status 
report from the building to the occupant allows for a human-in-the-loop control scenario.  For the 
RSF, the interface takes the form of data visualizations through a desktop client application, a 
campus display, and a website.  Each is meant to connect with occupants in different contexts, 
but all communicate the RSF’s current performance and clearly indicate when the building is not 
meeting expectations. 

The design team was contractually required to deliver real-time public visualizations for energy 
consumption by end use for the RSF (see Figure 2–2).  It used the submetered data from the 
power quality and flow meters, but the applications layer was not included in the architecture.  
This means there was no point of comparison for the displayed energy performance; the data 
were simply shown as they were, leaving the viewer unsure of the building’s health.  Further 
research into historical information was necessary for energy performance assurance tasks such 
as verifying that the building’s contractual energy goal was being met or determining the 
appropriate course of action if the building was not meeting the goal.  The limitations of this 
original visualization prompted the development of an improved design. 
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Figure 2–2 Original, control vendor-provided dashboard for the RSF (July 18, 2011, sunny day) 

The second iteration of the RSF dashboard design added the data analysis layer.  Over the first 
year of building operation, the metered data were collected and compared to the energy model 
results at the whole-building and end-use scales, as is done in an enhanced measurement and 
verification scope.  For some end uses, monitored data were either not required or not needed; in 
these cases, the control limits relied solely on model-derived data.  The second iteration of the 
dashboard was successful in that it enabled us to easily identify and implement improvements to 
building systems.  This allowed the RSF’s energy performance to meet the contractual energy 
goal.  A new interactive dashboard (see Figure 2–3) was developed that displayed the building’s 
power profile as a breakdown of the whole-building energy goals. 

 
Figure 2–3 Dashboard for the RSF 
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The interface enables users to “drill down” to inspect individual end-use time series data (see 
Figure 2–4).  Here, the mechanical loads are outside the expected range, especially during 
unoccupied periods.  The cause of the deviation was an air handler that was manually overridden 
to run all night.  After this inappropriate operating schedule was corrected, the agreement 
between measured and modeled data improved greatly. 

 
Figure 2–4 Building Agent dashboard for the RSF mechanical loads, August 16, 2013 

These examples use  a real-time snapshot and a historical analysis.  Both are necessary 
depending on the metric for comparison; multiple dashboard views provide the diversity of 
information occupants and building engineers need to make informed decisions about comfort 
and energy use.  Although the fourth layer (building-occupant interface, display selection, and 
design) is an important discussion point for meaningful and actionable visualizations (Schott et 
al. 2012), the remainder of this report addresses the third, applications layer. 



8 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

3.0 Methodology 
The report describes three different but related approaches to calculating performance bounds, 
called control limits, on building energy performance, divided by energy end use. 

1. Univariate Control Limits Based on Engineering Judgment  

2. Univariate Control Limits Based on Quantile Analysis 

3. Multivariate Control Limits Based on Quantile Regression. 

The goal of developing these control limits is to provide intuitive, visual contexts for displayed 
performance data without requiring users to conduct an in-depth building energy data analysis. 

In the first approach, which uses engineering judgment and manual curve fitting, end-use control 
limits are derived using static lookup-based performance targets, combined with polynomial 
curve-fit models.  These control limits are developed based on a combination of historical end-
use data and as-built energy modeling.  Single main effect variables are selected for each end 
use, such as solar irradiance for lighting performance.   

In the second approach, measured building end use energy data are used to develop empirical 
frequency distributions for each end use as a function of the main effect variable determined 
from visual inspection and a pairwise correlation analysis.  Appropriate control limits are defined 
as ranges in which a certain percentage of end-use consumption has been observed historically; 
e.g., the central 50% of observations between the 25th and 75th percentiles, as a function of the 
main effect variable.  The same process is then applied to simulated (modeled) energy end use 
data sourced from a calibrated building energy model. 

In the third approach, the building energy end use is modeled linearly in terms of other end uses, 
exogenous variables, and weather data, all of which are then transformed to orthogonal principal 
components (PCs), and the linear models are used to generate control limits using quantile 
regression for the measured and simulated data.  Here, quantile regression is used to predict the 
more stringent 40th and 60th quantiles.  Different percentile ranges are chosen between the second 
and third approaches to show different perspectives on control limit stringency. 

For the first approach, control limits are developed for all end uses, including heating, cooling, 
lighting, mechanical, plug loads, data center, and PV system output.  For the sake of brevity, in 
case of the second and third approaches, electricity consumption for cooling provided by chilled 
water is considered the energy end use to illustrate the process. 

In all three approaches, two sets of upper control limits (UCLs) and lower control limits (LCLs) 
are generated from historical measured and simulation-based data.  An energy-conservative logic 
is applied in all approaches to select one set of control limits in each situation.  This set of LCLs 
and UCLs for each energy end use is then adopted in the Building Agent for presentation to 
building operators and occupants. 

The energy-conservative logic, described in greater detail below, selects the lower value of the 
two UCLs and the lower value of the two LCLs for display on the Building Agent as long as the 
model-sourced control limits can be considered valid.  Conversely, if the modeled control limits 
are deemed invalid, the control limits derived from the measured data are adopted.  In effect, this 
logic presents to the viewer the more conservative control limits, encouraging occupants and 
operators to maintain the building’s energy performance in a more energy-conservative state.  In 
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the examples presented in this report, the modeled control limits are at times much lower than 
the measured data.  If the modeled control limits significantly deviate from the measured data 
results, users may not be motivated to take action because the targets are not realistically 
attainable.  Although the model is meant to represent end-use targets, large differences may 
mean either that the model is aggressive but attainable or that it is unrealistically aggressive.  In 
the latter case, indeed, occupants will be demotivated.  Therefore, a control limit development 
process that balances aggressive, yet attainable targets is a key motivation for our efforts. 
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4.0 Univariate Control Limits Based on Engineering Judgment  
4.1 Predicted Range Approaches 
Unique to the RSF dashboard (Figure 2–3) are the acceptable ranges around the subsystem goals 
that dynamically update based on measured main effect variables.  This concept of providing 
acceptable ranges, or control limits, is critical for creating a useful dashboard that compares real-
time end-use performance with model expectations.  In the first approach, which uses 
engineering judgment and manual curve fitting, end-use control limits are expressed by static 
performance tables and polynomial curve-fit models.  These control limits are developed based 
on a combination of historical end-use data and as-built energy modeling.  Single main effect 
variables, such as solar irradiance for lighting performance, were selected for each end use.   

4.1.1 Development of Curve Fits for Control Limits 
The following process was executed to develop the univariate (i.e., single main effect) control 
limits for each end use as displayed on the Building Agent.  To begin the process a minimum of 
1 year of hourly end use predictions from the as-built energy model are needed, along with 
corresponding hourly weather data.  For each end use, engineering judgment and past experience 
were used to determine the main effect or dominant driving variable.  Common examples 
included occupancy type, time of day, outdoor dry-bulb temperature, and solar radiation on a 
horizontal or an inclined surface.  Internal gains from people and equipment differ greatly 
between unoccupied and occupied states, so establishing separate curve fits for each occupancy 
state helped build more accurate control limits.  The researchers then used the dominant driving 
variable and hourly end-use data to develop curve fits that approximated the upper and lower 
bounds to identify the “acceptable” hourly end-use range versus the dominant driving variable.  
They incorporated the general philosophy for developing upper and lower curve fits in an 
attempt to exclude visually identified outliers.  The curve fits by end use were then translated 
either to lookup tables or to polynomial curve fit equations; the final goal was to measure each 
dominant driving variable and determine the acceptable ranges for any point in time. 

The fidelity of this method improves as end-use performance data are collected and integrated 
into the control limit calculations and the engineering analysis.  As measured performance data 
from the first year of RSF operations were evaluated, the purely model-based control limits were 
compared to the measured data.  For hours when the measured end uses exceeded the 
expectations, commissioning actions were identified and improvements implemented in an 
attempt to reduce end uses to better align with expectations.  For modes of operation where 
measured end uses were significantly below the expectations, the expectation curve fits were 
manually updated to align with past measured performance.   

This first approach to developing control limits successfully aligned operations with 
expectations; however, significant expert analysis was needed to develop the curve fits and 
identify the end-use dominant driving variables.  A key characteristic of this approach was that 
dynamic control limit ranges are available both in real time and over historical trends.  This 
insight was necessary for building operators and energy use decision-makers to understand how 
to align operations with expectations, especially when unrealistic ranges were updated based on 
improved operations.  However, a disadvantage was that an experienced energy engineer had to 
analyze an initial as-built energy model to identify the dominant driving variables.  The manual 
curve fit development process was based on engineering judgment, which limited the replication 
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potential.  Subsequent development efforts for the control limits focused on automating both the 
acceptable range development process and the identification of the dominant driving variables.   

4.2 Application 
The reduced-order model approach to end use energy range predictions initially implemented in 
the Building Agent is discussed in more detail in this section, showing the development process, 
minimum data requirements, and positive outcomes of using a predictive interface in energy 
performance assurance in the RSF.   

4.2.1 Photovoltaic Panels 
More than 2 MW of PV panels are installed on or near the RSF to offset the office building’s 
annual energy use to achieve net-zero energy.  Although renewable energy was a last 
consideration in the design process (after system efficiency measures), it is presented first 
because of the relative ease in determining a dashboard representation with acceptable control 
limits.   

A PVWatts PV model was used to predict energy production based on the final panel 
specification and configuration.  Figure 4–1 shows that the continuous curve fit model was 
determined by first plotting the modeled production against global horizontal irradiance, a 
known dominant variable for PV production.  Minimum and maximum control limit boundaries 
were then added from visual inspection and fitted with curve-fit equations that were then 
implemented in the application layer of the Building Agent. 

 
Figure 4–1 PV production versus global horizontal irradiance 
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The visualization layer of the PV predicted range is shown in Figure 4–2, with the measured PV 
output compared to the expected control limits, as calculated based on the measured global solar 
insolation (the dominant variable for PV performance).  The measured PV output exceeded the 
expected range for many hours, suggesting the temperature during those hours was lower and 
thus the PV output higher than for the average temperature used to establish the control limits.  
This observation reveals the limitation associated with selecting only one dominant variable and 
suggests more advanced approaches that account for all explanatory variables.  The quantile 
regression approach presented below is one possible pathway to accounting for all explanatory 
variables, as would be a Monte Carlo-based execution of the PVWatts simulation model using 
actual data to the extent available and probability distributions for the unobserved input 
variables. 

 
Figure 4–2 PV production predicted range visualization, blue line (measured) and silver band 

(control limits) for September 25, 2013 

4.2.2 Lighting 
The RSF occupants have some manual control of the electric lighting.  Daylight and occupancy 
sensors and timed sweeps  automatically control the lights to dim and turn off.  Daylighting in a 
net-zero energy office building is critical, so a detailed daylighting model was produced in 
design.  Figure 4–3 shows the results of the daylighting model, as expressed in hourly lighting 
power density (LPD) (w/ft2) as plotted against the available solar daylighting resource.  Based on 
visual inspection of general dependent variable impacts on daylighting performance, the initially 
developed UCLs and LCLs were generated and are also shown.   
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Figure 4–3 Modeled LPD versus solar irradiance on a vertical south-facing surface, with UCL 

and LCL curve fits 

Figure 4–4 shows that the daytime lighting energy use is largely dependent on exterior south 
vertical irradiance in actual operations, with the UCLs and LCLs for lighting energy use during 
occupied hours.  UCLs and LCLS based on the measured data also provided a better visual fit 
than the modeled control limits suggested.  Therefore, we used the measured lighting control 
limits for implementation in the Building Agent.  The data scatter in the modeled and measured 
lighting energy uses at low to no solar availability demonstrate the occupant control impacts on 
lighting energy use when daylighting is not available. 
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Figure 4–4 Weekday daytime LPD versus solar south vertical insolation 

Figure 4–5 shows the importance of an operational model.  Unlike the daytime lighting energy 
use, the nighttime lighting energy use is much higher than the design model predicted because 
the custodial crew’s system use was not considered during design.  The annual average lighting 
energy use during occupied hours matches the model well, and was used to develop control 
limits.  The energy model expectations for unoccupied hours were also used to deploy the 
Building Agent dashboard to continue to show the opportunity for turning off lights after hours. 
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Figure 4–5 Weekday unoccupied LPD control limits 

The lighting predicted ranges as initially applied in Building Agent show a continuous curve fit 
control limit combined with the unoccupied hours lookup table (see the dashboard 
implementation in Figure 4–6). 

 
Figure 4–6 Lighting predicted range visualization with measured use (blue line) and control 

limits (silver band) for October 10, 2013 

4.2.3 Plug Loads 
Plug loads are one of the largest end uses in the RSF, and are subject to aggressive load 
reductions (Lobato et al. 2011); each occupant has a 55-W allowance for a laptop, monitors, a 
phone, a task light, and miscellaneous items.  The energy model accounted for this load but 
could only assume a diversity factor of occupant use throughout the day. 
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The first step in operational energy performance assurance is to compare the first-year measured 
data, or initial operational model, to the design modeled data.  Figure 4–7 shows that the hourly 
average daytime operational load is much lower than the hourly average design prediction, but 
the nighttime load is higher than expected.  The model average is the same as the upper bound 
during unoccupied hours.  The model suggests the end-use budget; thus, the lesser of both 
datasets at any given hour is used to determine the dashboard control limits. 

 
Figure 4–7 First-year plug load operation hourly average power profile 

The UCLs and LCLs for occupied hours were determined by visually bounding the first-year 
data range (excluding outliers) and implemented in the dashboard using a lookup table, because 
time of day is the most obvious factor in the primarily occupant-driven load.  The resulting 
visualization is shown in Figure 4–8.  The data center energy use acceptable control limits were 
developed in the same manner. 

 
Figure 4–8 Plug loads predicted range visualization with measured use (blue line) and control 

limits (silver band) for September 24, 2013 14:00 to September 25, 2013 14:00 
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4.2.4 Mechanical 
The RSF’s mechanical loads consist primarily of ventilation air fans and pumps for the radiant 
heating and cooling systems. 

The energy performance assurance and predicted range evaluation for the mechanical systems 
mirror the process for developing plug load control limits, with two exceptions:  (1) the design 
model predictions overestimate energy use during the day instead of the night, so the first-year 
metered data are used as an upper bound at night and the design model results are used as an 
upper bound during the day; and (2) like the plug loads, a lookup table based on superior 
measured performance during unoccupied hours is used in place of the modeled expectation.  
This process is demonstrated in Figure 4–9. 

 
Figure 4–9 First-year mechanical systems operation hourly average power profile 

Figure 4–10 shows the implementation of the control limits for the mechanical end uses in the 
Building Agent. The measured data for this implementation example exceed the daytime and 
nighttime control limits, suggesting a possible fault.  Investigation into the mechanical systems 
revealed a manually overridden air handler schedule, keeping the system 100% on during 
unoccupied and partially occupied hours.  Once this was discovered and corrected, the actual use 
coincided more closely with the control limits (see Figure 4–11). 
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Figure 4–10 Mechanical systems predicted range visualization with measured use (blue line) 
including faulty air handler schedule and control limits (silver band) on August 15 and 16, 2013 

 
Figure 4–11 Mechanical systems predicted range visualization with measured use (blue line) 

including corrected air handler schedule and control limits (silver band) on October 7 and 8, 2013 
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4.2.5 Cooling and Heating 
The RSF uses hot water and chilled water from the campus district energy plant.  Hot water and 
chilled water meters measure the RSF’s thermal energy use and chilled water efficiency 
(kW/ton), and natural gas boiler efficiencies are applied to the metered thermal energy use to 
calculate system energy end uses.  For heating and cooling end uses, the outdoor air dry-bulb 
temperature is the dominant environmental variable.  By comparing the modeled hourly cooling 
energy use to the outdoor dry-bulb temperature, LCLs and UCLs were developed for occupied 
and unoccupied hours through visual inspection.  Linear curve fits based on the modeled cooling 
performance were then provided to the Building Agent (Figure 4–12, and cooling acceptance 
ranges were calculated and compared to measured cooling energy use.  This overly simplistic 
approach is limited, as it fails to capture important features in the data.  The heating control 
limits were derived with similar methods based on outdoor dry-bulb temperature as the single 
main effect variable. 

 
Figure 4–12 Modeled hourly cooling with weekday and weekend control limits 

These univariate (depending on the dominant explanatory variable) curve fits for acceptable 
control limits were based on the as-built model prediction for cooling energy use, and 
successfully predicted actual cooling energy use (Figure 4–13.  Setting end-use budgets, and 
tracking actual energy use in real time against these budgets, are effective methods for realizing 
net-zero design expectations for the RSF. 
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Figure 4–13 Measured and modeled hourly cooling 

This manual curve fit process effectively provided first-order control limits; however, its 
limitations are evident.  Cooling energy use is not always best predicted based solely on 
occupancy state and outdoor dry-bulb temperature; outdoor humidity and solar gains can also 
contribute significantly to cooling energy use.  These limitations suggested the need to develop 
better methods for automating these control limit curve fits and including multiple dominant 
variables.  Subsequent sections of this report discuss these improvements.   

4.3 Discussion 
The first process used to determine the predicted range models for the RSF, the first building 
represented by the Building Agent, is presented as an example of the energy assurance process 
emerging in the commercial buildings industry.  The process consisted of design and metered 
data comparisons, the validation or development of an asset model for systems, and an 
operational model for control variables, where necessary.  Then, a visually determined 
continuous polynomial curve fit equation or lookup table was applied to the asset and operational 
models and data, respectively.   

For noncontrolled systems such as PV, visually bounding asset model predictions relative to 
known dominant variables to determine reduced-order equations is a simple and sufficient 
process.  The information occupants need about these types of systems is whether the system is 
working and whether degradation is occurring. 
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On the other end of the spectrum, complex controlled building systems such as fans and pumps 
need more rigorous approaches to determining predicted energy use ranges.  The reduced-order 
lookup table approach used for the RSF Building Agent is not sufficient to capture the hourly 
and daily differences between potential and actual performance.  This leads to missed 
opportunities for energy savings. 

The first attempt to compare real-time energy end uses to model expectations using a simple 
method that captures first-order effects was simplistic and required engineering insights, but the 
Building Agent visualization still provided value to the RSF in meeting energy goals.  The value 
in predicted range visualization has been realized at NREL through numerous anecdotes to date: 

• The high plug load use at night was consistently high relative to the predicted ranges.  
This led NREL energy engineers, information technologists, and managers to work 
together to communicate options to employees for turning off monitors, computer, and 
other miscellaneous loads at night.  Best practices were developed based on the lessons 
learned (Lobato et al. 2011). 

• A high nighttime lighting load has led to training sessions that remind custodial crews to 
turn off ambient lights when they leave an area and to use the egress switches when 
possible, as these often provide sufficient light for the tasks being performed. 

• A consistently high data center load relative to the model gave the data center manager 
evidence to request funding for improved hot aisle containment strategies. 

• Last but not least, the whole-building energy display comparing the RSF energy use to 
the contractual EUI and net-zero energy goals have led to continued emphasis on meeting 
energy goals during building upgrade projects.  For example, the addition of a 24-hour 
visualization room for security was not originally designed for dedicated heating, 
cooling, or ventilation.  Dedicated systems were added once the building energy engineer 
was able to show that the building would tip past its annual operating goal if the building 
systems were to be used for this 24-hour occupancy program.   

The visualizations have provided information and the ranges have added the needed justification 
for building energy projects. 

The RSF dashboard development case study reveals the importance of defining a complete 
architecture, such as Building Agent, for a building-occupant interface.  The architecture must be 
considered in early project planning to ensure hardware (such as submeters) is in the purview of 
the design and construction team.  Also, owners must account for the human and computing 
resources necessary to create as-built asset models and ongoing operational models.  A final 
construction, or asset model, is sufficient for representing some end uses, but an operational 
model is needed for the high energy-saving potential systems that are controlled either by 
occupants or automatically, or both.   

The Building Agent dashboard moved the RSF operational practice from presenting 
noncontextualized building performance to a first-order data analysis with boundary conditions 
(i.e., presenting end uses with predicted ranges of acceptable energy use). 
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5.0 Univariate Control Limits based on Quantile Analysis 
5.1 Overview 
This second method improves on the previous method by developing an empirical quantile 
analysis process for calculating the control limits, rather than the manual curve-fit described in 
the previous chapter.  For the sake of brevity, electricity consumption for cooling provided by 
chilled water is considered the energy end use of choice to illustrate the second and third 
methods.  Here, chilled water load is converted to an electricity equivalent using a constant 
coefficient of performance (COP) of 7.8. 

In this section, measured RSF I performance data for 2011 (consisting of wings B and C) are 
analyzed and compared against the RSF I calibrated building energy model.  Wing A, also 
known as RSF II, was opened in 2012.  Because no separate energy model has been developed 
for RSF II, modeled energy data for the combined RSF I and II (simply RSF) scale the energy 
use data of RSF I on the basis of building floor area.  The third method (based on quantile 
regression) and discussed in Chapter 6, will investigate 2012 data for RSF I and RSF II. 

Initially, annual average daily quantile plots (box plots) are generated for the cooling energy end 
use, followed by a distinction between weekday and weekend.  Next, a winter/summer seasonal 
distinction is defined and the end-use consumption portrayed for winter and summer periods.  At 
its lowest level of resolution, each end use is distinguished by season and day of the week, 
revealing differences between weekdays and weekend days and holidays, but also between 
weekdays.  Next, scatter matrix plots are presented to reveal pairwise correlations among 
measured variables and the most important independent variables for each end use are identified.  
The chapter continues with annual and seasonal carpet plots for the cooling end use, allowing 
visual detection of seasonal patterns and unique events, and identifies the dominant independent 
variables.   

Finally, the chapter concludes with the development of the second control limit method based on 
the frequency of occurrences and the implementation in the Building Agent energy dashboard. 

5.2 Measured Performance Data 
5.2.1 Measured Data Annual Box Plots 
5.2.1.1 Average Daily Behavior 
The RSF receives chilled water from a central chilled water plant serving a district cooling 
system on the NREL campus.  The RSF I (wings B and C) cooling energy consumption profile 
shows peak annual values of around 40 kW electricity demand based on a simplified model, 
assuming a constant COP of 7.8.  This high COP value is attained—and has been verified 
through measurement—as a result of a best-in-class, fully variable, water-cooled chilled water 
plant operated in a very dry climate with very low wet-bulb temperatures.  Considering that RSF 
I has a conditioned floor area of 220,000 ft2, the resultant cooling demand of less than 0.2 W/ft2 
is extremely low.  Clearly, the RSF is a high-performance building, and the mixed-mode 
design—which involves natural ventilation, ground-coupled ventilation air precooling, good 
passive shading, high mass and high thermal resistance envelope, very low internal gains, and 
radiant cooling—is very effective.  

The box plot profiles in Figure 5–1 show the median values (thick black horizontal lines) biased 
toward the first quartiles, confirming that during most hours of the year the cooling demand is 
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low; seasonal summer cooling perspective is thus offered below.  The convention for declaring 
outliers is to use values that are either greater than 1.5 times the interquartile range above the 
third quartile or 1.5 times the interquartile range below the first quartile. 

 
Figure 5–1 Measured annual average daily cooling end use power as a function of time of day 

5.2.1.2 Separate Weekday and Weekend Behavior 
In the next step, the data were disaggregated into weekday and weekend patterns to eliminate the 
variance in the box plots (see Figure 5–2) based simply on the difference in building use between 
weekdays and weekends.  Cooling-related electricity demand for any hour of the day is a long-
tailed distribution, naturally bounded by zero at the low end.  Much variance in the data remains 
unexplained with an annual average time-of-day perspective, and motivates a seasonal 
distinction. 

 
Figure 5–2 Measured annual average weekday and weekend cooling energy  

end use as a function of time of day 
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5.2.2 Measured Data Seasonal Box Plots 

5.2.2.1 Average Daily Behavior 
This section shows average daily profiles separated by winter and summer periods.  Summer is 
considered June through October (5 months); winter is considered January through May and 
November through December (7 months).  The summer box plot in Figure 5–3 shows a distinct 
profile with median values rising from 06:00 to 13:00 and peaking during the early afternoon 
period of 14:00 to 16:00, thereafter falling again, with significant cooling remaining after 
occupancy from 18:00 to 21:00.   

The winter profile shows no discernible patterns, with most consumption being very low except 
for a large number of outliers as high as 20 kW; these outliers are expected to be introduced by 
the artificially abrupt summer/winter distinction.  Winter observations will not be further studied. 

 
Figure 5–3 Measured annual average summer and winter cooling energy  

end use as a function of time of day 

5.2.2.2 Daily Behavior by Weekday During the Summer 
Because the average summer day has a distinct diurnal profile, each day of the week is presented 
during the summer.  The weekend days (Saturday and Sunday) exhibit much lower cooling 
energy consumption than do the weekdays, suggesting either day-typing into weekday and 
weekend days, or alternatively, distinguishing between occupied and unoccupied periods (see 
Figure 5–4).  Mondays reveal the highest median cooling demand, followed by Tuesdays.  
Wednesdays and Thursdays are next lower; Fridays have the lowest weekday cooling demand.  
The high Monday values are likely due to the extra load resulting from cooling a building that 
was experiencing a weekend temperature setup. 
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Figure 5–4 Measured average summer cooling energy end use by day of week  

as a function of time of day 

5.2.3 Measured Data Scatter Matrix Plots 
The analysis thus far investigated temporal dependencies along season, day type, and hour of 
day; this section analyzes dependencies of variables relative to each other.  After the data have 
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0 2 4 6 8 10 12 14 16 18 20 22

0
1

0
2

0
30

40
Monday

Hour of the day

C
oo

lin
g 

P
o

w
e

r 
[k

W
]

0 2 4 6 8 10 12 14 16 18 20 22

0
1

0
2

0
30

40

Tuesday

Hour of the day

C
oo

lin
g 

P
o

w
e

r 
[k

W
]

0 2 4 6 8 10 12 14 16 18 20 22

0
1

0
2

0
3

0
4

0

Wednesday

Hour of the day

C
o

o
lin

g
 P

ow
er

 [k
W

]

0 2 4 6 8 10 12 14 16 18 20 22
0

1
0

2
0

3
0

4
0

Thursday

Hour of the day

C
o

o
lin

g
 P

ow
er

 [k
W

]

0 2 4 6 8 10 12 14 16 18 20 22

0
10

20
30

4
0

Friday

Hour of the day

C
o

ol
in

g
 P

ow
e

r 
[k

W
]

0 2 4 6 8 10 12 14 16 18 20 22

0
10

20
30

4
0

Saturday

Hour of the day

C
o

ol
in

g
 P

ow
e

r 
[k

W
]

0 2 4 6 8 10 12 14 16 18 20 22

0
10

20
30

40

Sunday

Hour of the day

C
oo

lin
g 

P
ow

e
r 

[k
W

]



26 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

are created for summer and winter periods separately to find pairwise correlations.  The pairwise 
Pearson’s correlation coefficients are in the upper panels and the scatter plots are in the lower 
panels.  In statistics, the Pearson product-moment correlation coefficient is a measure of the 
linear correlation between two variables, giving a value between +100% and −100%, inclusive.  
It is widely used as a measure of the strength of linear dependence between two variables. 

During the summer, a relatively strong correlation of 71% between dry-bulb ambient 
temperature (Temp.Sum.Mod) and measured cooling power can be measured, and a weaker one 
(51%) between global horizontal solar and cooling power (see Figure 5–5).  Ambient 
temperature and global horizontal insolation were the only available exogenous drivers 
considered for cooling.  Hence, if only one main effect variable can be chosen to model cooling 
energy demand during the summer, it should be ambient dry-bulb temperature. 

 

Figure 5–5 Pairwise correlation for measured summer cooling energy end use for ambient 
dry-bulb temperature and global horizontal insolation 

5.2.4 Carpet Plots 
In this section, carpet plots (also known as heat maps) are prepared for various time frames, 
allowing one to identify patterns easily and simply with visual inspection. 

The annual carpet plot in Figure 5–6 reveals the peak cooling demand to fall into the time period 
of late June to late August and from 11:00 to 18:00.  Compared to the measured building 
performance, the cooling demand drops sharply at the end of occupied hours (18:00).  Vertical 
lines show weekends and holidays.  The summer carpet plot in Figure 5–7 shows high cooling 
demand focused on several hot weeks during late July and late August.  Moreover, 2 hot weeks 
with high cooling energy demand occurred during late September and early October 2011. 

CoolingPower.Sum

0 10 20 30

0.71

0
10

2
0

30
40

0.51

0
1

0
2

0
30

Temp.Sum 0.46

0 10 20 30 40 0 200 400 600 800 1000

0
20

0
40

0
60

0
8

00
1

00
0

HorSolar.Sum

Summer Weekday Cooling



27 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

 
Figure 5–6 Annual carpet plot for measured cooling energy end use  

(hour of the day versus day of the year) 

 
Figure 5–7 Summer carpet plot for measured cooling energy end use  

(hour of the day versus day of the year) 

5.3 Building Energy Simulation Data 
An analysis that is similar to the one prepared for the measured performance data is now 
presented for the building energy simulation data.  The basis of the simulated data is a detailed 
eQuest building energy simulation of RSF I that uses Typical Meteorological Year 3 (TMY3) 
weather data for Boulder, Colorado. 

5.3.1 Modeled Data Annual Box Plots 
5.3.1.1 Average Daily Behavior 
The modeled cooling energy consumption profile in Figure 5–8 shows peak annual values of 
around 60 kW electricity demand based on a simplified model assuming a constant COP of 7.8 
and TMY3 weather data, which is roughly 20 kW higher than the measured 2011 data. 
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Figure 5–8 Modeled annual average daily cooling energy end use as a function of time of day 

5.3.1.2 Separate Weekday and Weekend Behavior 
Next, the data were disaggregated into weekday and weekend patterns to eliminate the variance 
in the box plots based on the difference in building use between weekdays and weekends (see 
Figure 5–9).  Compared to the measured performance data, the diurnal profile for weekdays 
appears similar; the most striking difference is that the peak third quartile cooling hours occur 
earlier in the day.  The third quartile values of the weekend cooling data, conversely, exhibit a 
more regular, approximately sinusoidal pattern. 

 
Figure 5–9 Modeled annual average weekday and weekend cooling energy  

end use as a function of time of day 
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5.3.2 Modeled Data Seasonal Box Plots 

5.3.2.1 Average Daily Behavior 
This section shows average daily profiles separated by winter and summer periods.  Recall, 
summer is considered June through October (5 months); winter is considered January through 
May and November through December (7 months).  The summer box plot shows a distinct 
profile, with median values rising from 7:00 to 12:00 and peaking during the early afternoon 
period of 13:00 to 15:00, thereafter falling with an exponential delay through the evening and 
night hours, with a minimum value observed at 4:00 (Figure 5–10). 

The winter profile shows a pattern similar to the summer case; however, the values are 
significantly lower except for numerous outliers as high as 25 kW.  Winter observations will not 
be further studied. 

 

Figure 5–10 Modeled annual average summer and winter cooling energy  
end use as a function of time of day 
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no clear differences between the 5 weekdays can be observed in the simulated data. 
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Figure 5–11 Measured average summer cooling energy end use by day of week  

as a function of time of day 

5.3.3 Modeled Data Scatter Matrix Plots 
The analysis thus far investigated temporal dependencies along season, day type, and hour of 
day.  Here, dependencies of variables relative to each other are analyzed.  After the data have 
been split into separate variables that contain either summer or winter data, scatter matrix plots 
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are created for summer and winter periods separately to find pairwise correlations (Figure 5–12).  
The correlation coefficients can be found in the upper panels and the scatter plots can be found in 
the lower panels. 

During the summer, a strong correlation of 81% between dry-bulb ambient temperature 
(Temp.Sum) and modeled cooling power can be measured, and a weaker one (63%) between 
global horizontal solar and cooling power.  Apparently, the stronger dependence on ambient dry-
bulb temperature relative to the case of measured cooling data reveals the more deterministic 
nature of the simulation scenario relative to the noisier measured case. 

As before, if only one independent variable can be chosen to model cooling energy demand 
during the summer, it should be ambient dry-bulb temperature. 

 

Figure 5–12 Pairwise correlation for modeled summer cooling energy end use  
for ambient dry-bulb temperature and global horizontal insolation 

5.3.4 Carpet Plots 
In this section, carpet plots are prepared for various time frames, allowing one to identify 
patterns easily and simply with visual inspection. 

The annual carpet plot reveals the peak cooling demand to fall into the time period of mid-July to 
late August and from 10:00 to 17:00.  Vertical lines show weekends and holidays.  The summer 
carpet plot shows high cooling demand focused on a number of hot weeks during early and late 
July.  Moreover, 2 hot weeks with high cooling energy demand occurred during late June and 
mid-September in the Boulder, Colorado TMY3 dataset.  Naturally, because the simulation is 
based on TMY data rather than on an actual weather year, these differences in the occurrence of 
peak cooling periods are expected (Figure 5–13 and Figure 5–14). 
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Figure 5–13 Annual carpet plot for modeled cooling energy end use  

(hour of the day versus day of the year) 

 
Figure 5–14 Summer carpet plot for modeled cooling energy end use  

(hour of the day versus day of the year) 

5.4 Development of Frequency-Based Control Limits 
In this section, the dominant trends discovered in the data exploration are revisited and improved 
models are suggested.  As mentioned before, the process is illustrated by focusing on the cooling 
energy end use modeling.  In contrast to the preceding discussion of trends in the observed data, 
the improved models were developed using the measured data for 2012 for the completed RSF 
consisting of RSF I (wings B and C) and RSF II (wing A).  Using the more recent 2012 data may 
be preferable over using 2011 data. 

5.4.1 Approach To Control Limit Development 
A simple approach is suggested for the improved models:  For each end use, ranges of expected 
values are generated for both empirical (measured) and modeled data as a function of the 
dominant independent (main effect) variable.  The empirical ranges represent the historical 
performance of the building; modeled ranges represent the ideal performance of the building, 
based on a calibrated building model.   
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Measured building performance data are collected over a meaningful time horizon, such as the 
last year or last calendar year, here 2012.  The modeled data are from a calibrated building 
energy model (eQuest); a PV system simulation conducted in Solar Advisor Model 2013 using 
the simplified PVWatts calculation engine was adopted to predict PV system electric power 
output.  Only cooling energy end use is discussed in detail in this report, so the PV simulation 
does not come into play.  Three potential factors would cause a divergence between the 
measured and modeled data:   

• The energy model is for the B and C wings only.   

• The measured data are for 2012 weather and occupancy patterns, but the model is using 
TMY3 weather and some other occupancy pattern.   

• The eQuest model cannot model all the dynamic behavior of a thermodynamically 
complex building such as the RSF.   

The second concern is partially addressed by presenting only static relationships between cooling 
energy consumption and weather variables; although the weather patterns were different, the 
static mapping is expected to be similar.  A model is never perfect, but it still provides predictive 
and diagnostic capabilities. 

For each end use and each data source (measured versus modeled), quantile tables are produced 
for relevant seasons and occupied periods using the main effect variables that have displayed the 
highest correlation with the particular end use:  season, occupancy state, time of day, ambient 
dry-bulb temperature, global insolation on a vertical south-facing surface, and global horizontal 
insolation.  Although the measured data include global insolation on a vertical surface facing 
south, these values had to be calculated for the modeled data using fundamental solar geometry 
relationships. 

The generated quantile tables are then saved as comma separated values (CSV) files for future 
use by the Building Agent energy information system.  We decided to use the lower quartile (25th 
percentile) as the lower bound and the upper quartile (75th percentile) as the upper bound, which 
leaves the range displayed as the central 50% of the expected values.   

The following list of quantile tables for empirical data (“Obs” for observed or measured) and 
modeled (“Mod”) data is saved for future analysis: 

• Cooling by occupancy status as a function of ambient dry-bulb temperature:  
Cooling.Occ.Mod.csv, Cooling.Occ.Obs.csv, Cooling.Unocc.Mod.csv, 
Cooling.Unocc.Obs.csv 

• Heating by occupancy status as a function of ambient dry-bulb temperature:  
Heating.Occ.Mod.csv, Heating.Occ.Obs.csv, Heating.Unocc.Mod.csv, 
Heating.Unocc.Obs.csv 

• Lighting by season and occupancy status as a function of global insolation on a south-
facing vertical surface:  Lighting.Sum.Occ.Mod.csv, Lighting.Sum.Occ.Obs.csv, 
Lighting.Sum.Unocc.Mod.csv, Lighting.Sum.Unocc.Obs.csv, 
Lighting.Win.Occ.Mod.csv, Lighting.Win.Occ.Obs.csv, Lighting.Win.Unocc.Mod.csv, 
Lighting.Win.Unocc.Obs.csv 
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• Mechanical by day type (WD being weekday and WE being weekend) as a function of 
time of day:  Mechanical.WD.Mod.csv, Mechanical.WD.Obs.csv, 
Mechanical.WE.Mod.csv, Mechanical.WE.Obs.csv 

• Plug loads by day type (WD being weekday and WE being weekend) as a function of 
time of day:  PlugLoads.WD.Mod.csv, PlugLoads.WD.Obs.csv, PlugLoads.WE.Mod.csv, 
PlugLoads.WE.Obs.csv 

• PV System Output as a function of global horizontal insolation:  PV.Mod.csv, 
PV.Obs.csv. 

In essence, for every end use at any point in time, two control ranges are available.  The question 
arises whether to use the measured or the modeled ranges.  If only the measured (or observed) 
ranges are used, there is little to no encouragement to engage occupants to improve the energy 
consumption.  Hence, a calibrated building model may provide more ambitious yet realistic 
performance goals.  Of course, savings goals can also be articulated through a percentage 
reduction of the measured values, say 20%.  However, as with the comparison for plug load and 
lighting energy end use (not shown in this report), the model is at times far off, either vastly 
underestimating or overestimating the actual building performance.  If the model were predicting 
unreasonably high end-use values (higher than were attained in the past), there would be no 
incentive to improve.  Conversely, if the model is predicting unreasonably low values, which 
cannot be attained without negatively impacting the building’s primary purpose, the model 
suggestions are invalid.   

We adopted the following approach to resolve this dilemma:  The model suggested range is 
considered invalid whenever the lower observed limit (here lower quartile LQO) is greater than 
upper model limit (here upper quartile UQM) or when the upper empirical limit UQO is smaller 
than the lower model limit LQM.  In case the model is invalid, the observed range is applied. 

The model is considered valid in all other cases.  In case the model is valid, the lower limit (LL) 
is the lesser of either the lower model or the lower observed limit and the upper limit (UL) is the 
smaller of either the upper model or the upper observed limit.  In other words:  If UQO > UQM 
& UQO < LQM, then LL = LQO and UL = UQO; else LL = min(LQO,LQM) and UL = 
min(UQO,UQM). 

Figure 5–15 shows a hypothetical development of empirical and model ranges over time.  Eight 
distinct time periods are indicated, from 1 to 8.  Beginning at 1, the requirement for a valid 
model is fulfilled for periods 1 to 3.  During phases 4 and 8, the model is invalid.  The labels next 
to the arrows indicate the result of applying the above minimization statements.   
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Figure 5–15 Illustration of selection of applicable LCL and UCL 

When these rules are applied, the following list of results tables for measured data (“Obs” for 
observed) and modeled (“Mod”) data are saved for future use by the Building Agent energy 
information system: 

• Cooling during summer months and by occupancy status as a function of ambient dry-
bulb temperature:  Cooling.Sum.Occ.csv and Cooling.Sum.Unocc.csv as well as cooling 
during summer months without occupancy distinction:  Cooling.Sum.csv.  In addition, 
cooling for all months distinguished only by occupancy status as a function of ambient 
dry-bulb temperature:  Cooling.Occ.csv and Cooling.Unocc.csv. 

• Heating during winter months and by occupancy status as a function of ambient dry-bulb 
temperature:  Heating.Win.Occ.csv and Heating.Win.Unocc.csv. 

• Lighting by season and occupancy status as a function of global insolation on a south-
facing vertical surface:  Lighting.Sum.Occ.csv and Lighting.Sum.Unocc.csv as well as 
Lighting.Win.Occ.csv and Lighting.Win.Unocc.csv. 

• Mechanical by day type (WD being weekday and WE being weekend) as a function of 
time of day:  Mechanical.WD.csv and Mechanical.WE.csv. 

• Plug loads by day type (WD being weekday and WE being weekend) as a function of 
time of day:  PlugLoads.WD.csv and PlugLoads.WE.csv. 

• PV System Output as a function of global horizontal insolation:  PV.csv. 

5.4.2 Cooling Energy Consumption Versus Ambient Temperature 
The strongest correlation for cooling energy consumption was, not surprisingly, found for 
ambient air temperature.  Restricting the analysis to summer months, the quantiles for all hours 
are presented first and then for occupied hours and for unoccupied hours during weekday nights 
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and weekends.  In Figure 5–16 and Figure 5–17, the width of each box indicates the number of 
data available in the corresponding bin.   

5.4.2.1 All Summer Hours 
Developing so-called energy signatures for cooling energy end use; i.e., a depiction of the 
cooling demand as a function of ambient dry-bulb temperature, enables the analyst to detect 
weather-dependent and weather-independent end use components.  An inspection of the 
measured cooling energy end use versus ambient temperature for all summer hours revealed 
somewhat irregular consumption patterns for ambient temperatures below 20.8°C, albeit at a 
very low level.  A nearly linear increase of total cooling power for the RSF with ambient 
temperature can be observed for temperatures above 20.8°C. 

 

Figure 5–16 Measured cooling energy end use versus ambient temperature  
for all summer hours 

On the other hand, inspecting the modeled cooling energy end use versus ambient temperature 
for all summer hours, one can detect a much smoother development of the median total cooling 
power.  In both the measured and modeled cases, a joint treatment of all summer hours leaves a 
large number of outliers, which will be remedied below by distinguishing between occupied and 
unoccupied hours. 
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Figure 5–17 Modeled cooling energy end use versus ambient temperature for all summer hours 

Applying the energy-conservative control logic introduced above, the following table of control 
limits can be generated for all summer hours.  The LCL corresponds to the first quartile and the 
UCL to the third quartile.  Table 5–1 has been implemented in the Building Agent energy 
information system by linearly interpolating the control limits for the currently observed ambient 
temperature between the midpoints of two adjacent ambient temperature bins. 

Table 5–1 Cooling Energy End-Use UCLs and LCLs (kW) Versus Ambient Temperature (°C) 
for All Summer Hours 

Bin 
(–7.2, 
–3.2) 

(-3.2, 
0.8) 

(0.8, 
4.8) 

(4.8,
8.8) 

(8.8,
12.8) 

(12.8,
16.8) 

(16.8,
20.8) 

(20.8,
24.8) 

(24.8, 
28.8) 

(28.8,
32.8) 

(32.8,
36.8) 

1st Quartile 0 0 0 0 0 3 6 8 15 19 27 
3rd Quartile 0 1 1 2 3 7 12 23 40 51 82 

 

5.4.2.2 Occupied Summer Hours 
Prompted by the large number of outliers for the measured and modeled cooling energy 
signatures, we separated the datasets into occupied and unoccupied summertime periods (Figure 
5–18 and Figure 5–19 ).  For higher ambient temperatures, the occupied summer hours are 
associated with higher cooling energy consumption than the corresponding data for all summer 
hours. 
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Figure 5–18 Measured cooling energy end use versus ambient temperature  

for occupied summer hours 

 
Figure 5–19 Modeled cooling energy end use versus ambient temperature  

for occupied summer hours 

The energy-conservative control logic can be applied to generate the following table of control 
limits for occupied summer hours.  Table 5–2, Figure 5–20, and Figure 5–21 require the 
occupancy status of the building and the ambient temperature. 
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Table 5–2 Cooling Energy End-Use UCLs and LCLs (kW) Versus Ambient Temperature (°C) 
for Occupied Summer Hours 

Bin 
(–6.7, 
–2.7) 

(-2.7, 
1.3) 

(1.3,
5.3) 

(5.3,
9.3) 

(9.3,
13.3) 

(13.3,
17.3) 

(17.3,
21.3) 

(21.3, 
25.3) 

(25.3, 
29.3) 

(29.3,
33.3) 

1st Quartile 0 0 4 4 8 11 6 18 19 26 
3rd Quartile 0 1 11 11 15 26 15 37 45 56 

 

5.4.2.3 Unoccupied Summer Hours 

 

Figure 5–20 Measured cooling energy end use versus ambient temperature  
for unoccupied summer hours 
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Figure 5–21 Modeled cooling energy end use versus ambient temperature  
for unoccupied summer hours 

The energy-conservative control logic can be applied to generate the following table of control 
limits for unoccupied summer hours.  Again, Table 5–3 requires the occupancy status of the 
building and the ambient temperature. 

Table 5–3 Cooling Energy End Use UCLs and LCLs (kW) Versus Ambient Temperature (°C) 
for Unoccupied Summer Hours 

Bin 
(–7.2, 
–3.2) 

(–3.2, 
0.8) 

(0.8,
4.8) 

(4.8,
8.8) 

(8.8,
12.8) 

(12.8,
16.8) 

(16.8,
20.8) 

(20.8, 
24.8) 

(24.8, 
28.8) 

(28.8,
32.8) 

1st Quartile 0 0 0 0 0 3 4 8 11 11 
3rd Quartile 0 1 1 1 3 7 12 18 22 24 

 

5.4.2.4 All Occupied Hours 
After this first approach in the Building Agent environment was implemented, it became 
apparent that the seasonal distinction did not offer performance improvements beyond the 
selection of ambient dry-bulb temperature as the independent variable.  Thus, separate energy 
signatures for total RSF cooling power for all occupied and unoccupied hours for observed and 
modeled data were prepared.   

The occupied period data show that the observed energy signature rises steeply for lower 
ambient temperatures than the model predicts:  the positively sloped portion of the energy 
signature begins with the (11,15) °C bin, whereas in the case of the modeled data the rise begins 
not before the (15,19) °C bin, indicating a lower balance point temperature for the actual RSF 
than the model (Figure 5–22 through Figure 5–25).  The lower balance point temperature is 
likely due to higher cumulative internal and equipment heat gains. 
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Figure 5–22 Measured cooling energy end use versus ambient temperature for occupied hours 

 

Figure 5–23 Modeled cooling energy end use versus ambient temperature for occupied hours 
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Table 5–4 Cooling Energy End Use UCLs and LCLs (kW) Versus Ambient Temperature (°C) 
for Occupied Hours 

Bin 
(–17, 
–13) 

(–13, 
–9) 

(–9, 
–5) 

(–5,
–1) 

(–1,
3) 

(3, 
7) 

(7, 
11) 

(11,
15) 

(15,
19) 

(19, 
23) 

(23, 
27) 

(27,
31) 

(31,
35) 

1st Quartile 0 0 0 0 0 0 0 0 2 7 11 22 20 
3rd Quartile 0 0 0 0 0 2 2 3 7 20 40 49 78 

 

5.4.2.5 All Unoccupied Hours 

 
Figure 5–24 Measured cooling energy end use versus ambient temperature  

for unoccupied hours 
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Figure 5–25 Modeled cooling energy end use versus ambient temperature  
for unoccupied hours 

Table 5–5 Cooling Energy End-Use UCLs and LCLs (kW) Versus Ambient Temperature (°C) 
for Unoccupied Hours 

Bin 
(–18, 
–14) 

(–14, 
–10) 

(–10, 
–6) 

(–6,
–2) 

(–2,
2) 

(2, 
6) 

(6, 
10) 

(10,
14) 

(14,
18) 

(18, 
22) 

(22, 
26) 

(26,
30) 

(30,
34) 

1st Quartile 0 0 0 0 0 0 0 0 0 4 11 11 19 
3rd Quartile 0 0 0 0 0 0 1 3 8 13 20 22 25 

 

5.5 Energy Dashboard Implementation 
The control limits shown in Table 5–4 and Table 5–5 have been implemented in the Building 
Agent system.  Figure 5–26 shows the instantaneous cooling energy end use and Figure 5–27 the 
historical development.  The gray band in Figure 5–26 and Figure 5–27 is defined by the LCLs 
and UCLs developed in this section.  Evidently, for the time period shown, the building exhibited 
cooling energy consumption above the UCL. 
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Figure 5–26 Dashboard view of instantaneous total cooling power (kW) in the RSF  

along with LCLs and UCLs shown as a gray band above 

  
Figure 5–27 Dashboard view of historical total cooling power (kW) (blue) development in the 

RSF along with control limits 

5.5.1 Comparison With Engineering Judgment Method 
A comparison between the first engineering judgment-based method and the second quantile 
analysis shown in Figure 5–28 reveals that (1) significant subjective judgment represented by a 
simplistic linear representation in first approach did not capture mild weather hours cooling 
performance; and (2) the second quantile analysis method proved to be as effective as the first, 
and was often a more precise method with tighter acceptable control limits, offering better 
insight into operations (see Figure 5–29). 
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Figure 5–28 Modeled cooling summer occupied hours from quantile analysis compared with 

UCLs (blue dot) and LCLs (orange dot) from engineering judgment method 

 
Figure 5–29 Modeled PV quantile analysis compared with UCLs (blue dot) and LCLs (orange 

dot) from engineering judgment method 
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6.0 Multivariate Control Limits Based on Quantile Regression 
6.1 Motivation 
In the second method presented, control limits were defined as lower and upper quartiles of 
empirical distributions of energy end use versus the dominant independent variable; e.g., ambient 
dry-bulb temperature or time of day.  The resulting nonlinear functions were saved as tables for 
implementation in the energy dashboard.  Forcing these control limits onto univariate 
relationships implies, however, that other available explanatory variables or covariates are 
ignored and requires that the dominant independent variable be discovered manually in advance. 

A universally applicable methodology is desired that harnesses all the available covariates of an 
energy end use to predict UCLs and LCLs as functions of all the relevant independent variables, 
not just the dominant one.  In essence, a methodology is sought that can be applied to any 
situations where control limits on energy end use are needed, whether a sophisticated monitoring 
system makes dozens of variables available or whether only a few points are monitored. 

6.2 Background on Quantile Regression 
Quantile regression analysis is used in statistics and econometrics.  Whereas the method of 
ordinary least squares (OLS) results in estimates that approximate the conditional mean of the 
response variable given certain values of the predictor variables, quantile regression aims to 
estimate either the conditional median or other quantiles of the response variable.  In this project, 
the control limits on the energy end use are defined as the quantiles of interest. 

One advantage of quantile regression, relative to OLS regression, is that the quantile regression 
estimates are more robust against outliers in the response measurements.  Yet, the main attraction 
of quantile regression is that different measures of central tendency and statistical dispersion are 
available to conduct a more comprehensive analysis of the relationship between variables. 

Although statistical models arising from the method of least squares can be solved using 
numerical linear algebra, quantile regression models lead to linear programming problems solved 
using either the simple method in case of moderate sized problems or using the interior point 
method for large data problems.  As implemented in the statistical computing environment R 
used for this work, the quantile regression function computes an estimate on the n-th conditional 
quantile function of the response, given the covariates, as specified by a formula argument.  As 
in the case of linear regression, the quantile regression function assumes a linear specification for 
the quantile regression model; i.e., that the formula defines a model that is linear in its 
parameters, not necessarily in its model structure. 

6.3 Methodology 
6.3.1 Data Analysis Procedure 
As shown in Figure 6–1, the process adopted begins with the acquisition of end use and weather 
data for the actual building and the detailed building simulation model.  The datasets are 
disaggregated by building operational mode (day type, occupancy status, and season) and any 
multicollinearity is removed from the datasets by means of principal component analysis (PCA) 
explained below.  The significant PCs are retained for construction of linear models, while 
reducing the complexity of the model using stepwise regression that minimizes the Bayesian 
Information Criterion (BIC) as the performance/complexity metric.  Next, based on the 



47 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

parsimonious linear models attained through stepwise regression, models for preselected 
conditional quantiles are generated for the monitored and the building simulation data. 

 
Figure 6–1 Flowchart of analysis for developing individual end use control limits  

based on quantile regression 

The last step of the data analysis procedure involves applying the same energy-conservative data 
logic between the measured and the modeled data of the building, as in the case of frequency-
based quantile analysis.  The following sections apply this analysis and control limit estimation 
method to cooling energy use. 

6.3.2 End-Use Mode Definition 
Within a given end use, further classifying data of similar types into exhaustive, mutually 
beneficial, but fundamentally different groups or “modes” can be useful.  The analysis in this 
report uses three such modes: 

 Day type (weekday or weekend) 

 Occupancy state (occupied or unoccupied) 

 Season (winter or summer). 

Day type is determined by day of the week, with Saturday and Sunday considered “weekend” 
days, and all others “weekdays.” Occupancy state is determined by hour of the day; occupied 
hours are taken as 6:00 to 18:00; all other hours are taken as unoccupied.  Lastly, season is 
defined by month, with summer taken as June–October, and all other months taken as winter.  
Although the seasonal distinction has been available, seasonal models for summer cooling and 
winter cooling have not been developed; rather, one model was developed for occupied periods 
and one for unoccupied periods, and for measured and modeled data. 

6.3.3 Model Validation 
Because the time series of the data and subsequent models developed are complex (although no 
true time series analysis is performed), this model is partially validated in two ways:.  (1) the 
standard errors of quantile regression fits are computed using Markov Chain Marginal 
Bootstrapping, which provides a measure of confidence for the UCLs and LCLs; and (2)  overall 
model quality is assessed using a combination of the R2 values for linear models of individual 
end-use modes, model relevance as indicated by the F test, and finally visual assessment when 
compared to measured data. 
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modeled end use and weather 

data
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operating mode to remove 

multicollinearity 

Determine significant 
principal components for 
each end use and mode
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6.4 Measured Cooling Data 
6.4.1 Occupied Periods 
Independent variables used in multivariate regression are often not independent; rather, they are 
collinear.  That is, various regressors share similar behavior.  Thus, models built may have a 
good fit but may be suspect as predictive models because model coefficients and predictions 
show large standard errors and uncertainty bands, which lead to unstable predictions.  Also, in 
models with collinear regressors, the regression coefficients are no longer proper indicators of 
relative physical importance.  PCA is the most popular method for removing such effects of 
collinearity and summarizing the variance in the regressor set. This reduces the dimensionality of 
the multivariate datasest and increases model robustness. 

PCA is a technique for singular decomposition of covariance matrices that effectively ranks the 
dominant modes of variation, or PCs, in a set of data.  One first constructs a covariance matrix of 
potential predictor variables (variables are first normalized to a mean of 0 and a standard 
deviation of 1).  The scaled variables are contained in a matrix, 𝑋, with variables separated by 
column.  The covariance matrix, 𝑆, of these data is then given by  

𝑆 =
1

𝑁 − 1
𝑋𝑇𝑋 

in which 𝑁 − 1 represents the degrees of freedom for the variance measure, N being the total 
number of observations in the training dataset.  The resulting square covariance matrix is then 
decomposed by solving the eigenvalue problem 

𝑆𝐸 = 𝜆𝐸 

The resulting diagonal eigenvalue matrix, 𝜆, contains the variance present in each PC of the data.  
The eigenvectors for each PC are the columns of the square matrix 𝐸, and provide a set of 
weights on the variables in the original dataset that can be used to easily identify key predictor 
variables.  The original dataset can further be transformed into the “PC space” by projecting the 
original dataset onto the new set of coordinate axes in the eigenvector matrix 

𝑃 = 𝑋𝐸 

The matrix 𝑃 contains the PCs of 𝑋 and is the same size as the original dataset.  Because of the 
eigen decomposition and coordinate transformation, the PCs have the unique and desirable 
properties of being orthogonal and uncorrelated.  As a result, all multicollinearity between the 
PCs is eliminated, and they can be used as predictors in regression models with less ambiguity as 
to which variable combinations form the best set. 

Then, the significant leading PCs are selected as those that contribute more than the average 
share of variance description (Figure 6–2). 
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Figure 6–2 Individual and cumulative variance explained by PCs for measured cooling energy 

end use during occupied periods 

Thus, the dimensionality of measured occupied cooling variables is reduced from 8 to 3.  It is 
also useful to examine the loading factor for the first two significant PCs to assess the validity of 
the orthogonalization in terms of known influences on this particular end use.  Figure 6–3 shows 
the loading factors for the most descriptive PCs. 

 
Figure 6–3 Loading factors for the two dominant PCs for measured cooling energy end use 

during occupied periods 

In the case of the measured RSF data, only limited weather data are available.  The dominant 
loadings of the first PC are associated with the mechanical, light, and plug load end uses, 
followed by horizontal and vertical insolation and ambient temperature.  The loadings of the 
second PC emphasize ambient temperature and global horizontal radiation, followed by the other 
end uses with the opposite sign.   

Next, these significant PCs are used to determine a parsimonious model for measured occupied 
cooling energy use using stepwise regression.  Explanatory variables used in the regression are 
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the dominant PCs identified in the PCA and a set of exogenous cycle variables for hour of the 
day ℎ and day of the year 𝑑. 

𝐶ℎ,1 = sin
2𝜋ℎ
24

; 𝐶ℎ,2 = cos
2𝜋ℎ
24

;𝐶𝑑,1 = sin
2𝜋𝑑
365

; 𝐶ℎ,2 = cos
2𝜋𝑑
365

 

These cycle variables are designed to capture the diurnal and annual periodicities in the energy 
end use development and significantly improve model performance.  They are considered 
exogenous, because they are process independent and independently available. 

The linear model could contain any of the variables and their first- and second-order interaction 
terms for the significant PCs, and the stepwise regression is conducted using the BIC and not 
Akaike’s Information Criterion.  BIC is a cost-complexity metric used to find a parsimonious 
model that balances model prediction performance with model complexity, 

𝐵𝐼𝐶 = −2 ln 𝐿 + 𝑘 ln𝑁 
where 𝐿 is the maximized value of the likelihood function for the estimated model, 𝑘 the number 
of free parameters to be estimate, and 𝑁 the number of observations.  Assuming that the model 
errors are independent and identically distributed according to a normal distribution and the 
boundary condition that the derivative of the log likelihood with respect to the true variance is 
zero, this becomes (up to an additive constant, which depends only on 𝑁 and not on the model), 

𝐵𝐼𝐶 = 𝑁 ln𝜎𝜀2 + 𝑘 ln𝑁 
where 𝜎𝜀2 is the error variance 

𝜎𝜀2 =
1
𝑁

 �(𝑥𝑖 − 𝑥𝚤�)2
𝑁

𝑖=1

 

and 𝑥𝚤�  is the predicted and 𝑥𝑖 the measured data.  The stepwise regression attempts to minimize 
BIC.  In general, BIC penalizes free parameters more strongly than does Akaike’s Information 
Criterion.   

Stepwise regression is a powerful model building technique that combines backward elimination 
and forward selection processes.  Initially, the correlation coefficient between the response 
variable and each regressor is computed.  The most highly correlated regressor enters the 
regression, OLS minimization is applied, and the goodness of fit (here BIC) is computed.  Then, 
the second most highly correlated regressor is added to the first one and OLS is conducted again.  
For each regressor, the Student-t statistic is computed to test for the significance of each 
coefficient.  Insignificant regressors are removed.  The process ends when no more regressors 
enter or leave the OLS process. 

Figure 6–4 shows a summary of the linear model created by the process.  The model contains as 
regressors the individual PCs PC1, PC2, and PC3, three of the cycle variables, all first-order 
interaction terms between the PCs and the cycle variables, as well as all first-order interaction 
terms between the three cycle variables.  Each of the 18 model variables is significantly different 
from zero, as confirmed by high Student-t scores and associated low Type I errors.  Moreover, 
the overall model exhibits a very high F-statistic of 915, which indicates that it is significantly 
different from a random model and the R2 statistic of 79% reveals that 79% of the variance in the 
data can be explained by the linear model. 
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Figure 6–4 Linear model structure summary report for measured cooling energy end use 

during occupied periods 

The model residuals are analyzed using a quantile-quantile or Q-Q plot (see Figure 6–5), which 
is a plot of the quantiles of two distributions against each other.  The pattern of points in the plot 
is used to compare the two distributions.  Linear regression theory dictates that the residuals 
should be normally distributed with zero mean.  Deviations from this assumption are revealed in 
a Q-Q plot by the deviations of the actual residual quantile distribution from the assumed normal 
distribution.  The deviations of the model residuals from the assumed normal deviations are 
fairly significant, indicating that the residuals exhibit nonuniformity.  Causes for nonuniform 
residuals include missing regressor variables, outliers, heteroscedasticity (nonconstant variance 
in the residuals), inappropriate model structure, and serial (auto) correlation. 

The Durbin–Watson (DW) test is applied to test for first-order autocorrelation of the residuals.  If 
no serial or autocorrelation is present, the expected value of DW is 2.  If the model underfits, 
DW would be less than 2; it would be greater than 2 for an overfitted model, the limiting range 
being 0–4.  If the DW statistic is substantially less than 2, there is evidence of positive serial 
correlation.  As a rough rule of thumb, if DW is less than 1.0, there may be cause for alarm.  
Small DW values indicate that successive error terms are, on average, close in value to one 
another, or positively correlated.  The model reveals a score of 0.59 and is therefore underfitting 
with positively correlated residuals. 
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Figure 6–5 Q-Q normal plot for residuals of linear model for measured cooling  

energy end use during occupied periods 

The available remedies for the nonuniform residuals in this case include (1) the addition of 
additional regressor variables; (2) transformation of the dependent variable; e.g., by means of 
logarithmic transformation; and (3) the use of weighted least squares instead of OLS.  The best 
option may be to measure additional variables that are causally related to cooling energy end use, 
as long as they can be easily measured.  However, these additional measurements are currently 
not available. 

Next, the control limits for this mode and end use are modeled using quantile regression for the 
40th, 50th (median), and 60th quantiles and the computed 40th and 60th quantiles.  The mean 
predictions are plotted against measured cooling energy consumption in Figure 6–6.  Predicted 
control limits and the mean prediction increase roughly linearly with the measured cooling.  
Also, a meter resolution of 2 kW is evident in the measured data. 
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Figure 6–6 Scatter plot of the quantile (40th and 60th) and linear (mean) regression predictions 

for measured cooling energy end use during occupied periods 

Next, for the occupied periods, a time series plot of the quantile predictions and the measured 
occupied data is provided in Figure 6–7.  In general, control limits increase during the summer 
and decrease during the shoulder periods and winter; the measured cooling consumption follows 
that trend. 

 
Figure 6–7 Time series plot of the quantiles (40th and 60th) and measured  

cooling energy end use during occupied periods 

Finally, the median quantile prediction is compared against the mean prediction, along with the 
mean prediction against the measured occupied cooling data in Figure 6–8.  The slope of the 
predicted median is slightly below the predicted mean, confirming that the mean is biased 
positively because of high-valued outliers of cooling energy end use.  Moreover, nonphysical 
negative values of cooling energy can be observed.  The mean prediction is below the measured 
values above approximately 20 kW. 
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Figure 6–8 Scatter plot of the median versus mean regression predictions  
(left) and of the mean regression prediction versus the measured cooling data  

(right) for measured cooling energy end use during occupied periods 

6.4.2 Unoccupied Periods 
The analysis for the measured unoccupied cooling energy use is nearly identical to that outlined 
in Section 6.4.1, but considers only those measured data points deemed “unoccupied” (hours 
00:00 to 5:00 and 18:00 to 23:00).  First, PCA is applied to the data and the four most significant 
PCs are selected (see Figure 6–9 and Figure 6–10. 

 
Figure 6–9 Individual and cumulative variance explained by PCs for measured cooling energy 

end use during unoccupied periods 
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Figure 6–10 Loading factors for the two dominant PCs for measured cooling energy end use 

during unoccupied periods 

Again, the dominant PC is driven most directly by the mechanical end use, horizontal and 
vertical insolation, followed by light and plug loads, and then ambient temperature.  The 
significant four PCs are used to determine a parsimonious model for measured unoccupied 
cooling energy use.   

The model contains as regressors all four cycle variables, most of the first-order interaction terms 
between PC1, PC3, and PC4 and the cycle variables, as well as all first-order interaction terms 
between the four cycle variables.  Each of the 22 model variables is significantly different from 
zero, as confirmed by high Student-t scores and associated low Type I errors.  Moreover, the 
overall model exhibits a high F-statistic of 429, which indicates that it is significantly different 
from a random model, and the R2 statistic of 72% reveals that 72% of the variance in the data can 
be explained by the linear model.  In summary, the linear model for the unoccupied measured 
cooling periods is slightly inferior to the linear model for the occupied measured cooling periods. 

The Q-Q plot in Figure 6–11 shows that the deviations of the model residuals from the assumed 
normal deviations are again fairly significant, indicating that the residuals exhibit nonuniformity.  
The DW test revealed a score of 0.93, suggesting that the model is underfitting with positively 
correlated residuals. 
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Figure 6–11 Q-Q normal plot for residuals of linear model for measured  

cooling energy end use during unoccupied periods 

Next, the control limits for this mode and end use are modeled using quantile regression for the 
40th, 50th (median), and 60th quantiles and the computed 40th and 60th quantiles along with the 
mean predictions are plotted against measured cooling energy consumption (Figure 6–12). 

 
Figure 6–12 Scatter plot of the quantile (40th and 60th) and linear (mean) regression predictions 

for measured cooling energy end use during unoccupied periods 
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Next, for the unoccupied periods, a time series plot of the quantile predictions and the measured 
occupied data is provided.  In general, control limits increase during the summer and decrease 
during the shoulder periods and winter, with the measured cooling consumption following that 
trend (Figure 6–13). 

 
Figure 6–13 Time series plot of the quantiles (40th and 60th) and measured  

cooling energy end use during unoccupied periods 

Finally, the median quantile prediction is compared against the mean prediction, along with the 
mean prediction against the measured unoccupied cooling data in Figure 6–14.  The median 
versus mean reveals an interesting curvature, almost quadratic behavior.  The median falls below 
the mean up to about 20 kW, and recovers with a steeper slope from 20 kW to the maximum 
observed values.  Moreover, the mean prediction is uniformly below the measured values for the 
entire range of observed data. 

 
Figure 6–14 Scatter plot of the median versus mean regression predictions (left) and of the 

mean regression prediction versus the measured cooling data (right) for measured cooling energy 
end use during unoccupied periods 

0 1000 2000 3000 4000

0
5

1
0

15
20

25
3

0
3

5

Measured Unoccupied Cooling

Index

M
e

a
su

re
d

 U
n

o
cc

u
p

ie
d

 C
o

o
lin

g
 [

kW
]

Measured

UCL (60%)

LCL (40%)

−5 0 5 10 15 20 25 30

0
1

0
2

0
3

0

meas.cool.unocc.lm$fitted.values

m
e

a
s.

co
o

l.u
n

o
cc

.r
q

$
fit

te
d

.v
a

lu
e

s[
, 

2
]

0 5 10 15 20 25 30 35

−
5

0
5

1
0

1
5

2
0

2
5

30

meas.cool.unocc$cool

m
e

a
s.

co
ol

.u
n

o
cc

.lm
$

fit
te

d
.v

a
lu

e
s



58 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

Now that occupied and unoccupied periods have been separately analyzed and control limits 
developed, the LCLs and UCLs can be plotted against the measured cooling energy consumption 
for the entire year (see Figure 6–15).  With 8,760 hours available, the 40th and 60th quantiles 
follow the seasons as intuition would dictate, rising from low values in the spring to peak values 
around mid-August. 

 
Figure 6–15 Annual development of LCLs (green) and UCLs (red) based on the measured 

cooling energy consumption data, along with the actual measured values (blue) 

6.5 Modeled Cooling Data 

6.5.1 Occupied Periods 
The analysis procedure between modeled and measured data is identical; the primary differences 
are the data source and the number of variables included.  First the multicollinearity is removed 
from the data through PCA on the scaled modeled data.  Then, significant PCs are selected as 
those that contribute more than the average share of variance description (see Figure 6–16). 
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Figure 6–16 Individual and cumulative variance explained by PCs for modeled cooling energy 

end use during occupied periods 

Significantly more information is available in the case of the modeled data because a complete 
weather archive is used, in particular relative humidity, ambient wet-bulb temperature, additional 
solar variables such as diffuse and beam horizontal, as well as direct normal components.  In 
Figure 6–17, ambient dry-bulb temperature Todb is in (°F) and Todb.1 is in (°C); the PCA finds 
identical loadings for both.  In the dominant PC, high loadings are associated with dry-bulb and 
wet-bulb temperatures (or relative humidity with the opposite sign), then with global horizontal 
insolation.  As expected, the second dominant PC exhibits loadings that emphasize all other 
variables not previously emphasized in the first PC, in particular lights, plug loads, and 
mechanical systems. 

 
Figure 6–17 Loading factors for the two dominant PCs for modeled cooling energy end use 

during occupied periods 
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Figure 6–18 shows a summary of the linear model created by the process.  The model contains as 
regressors the individual PCs PC1–4, all four cycle variables, five first-order interaction terms 
between the four cycle variables, as well as numerous first-order interaction terms between the 
PCs and the cycle variables.  Except for 𝐶ℎ,1, each of the 27 model variables is significantly 
different from zero, as confirmed by high Student-t scores and associated low Type I errors.  
Moreover, the overall model exhibits a very high F-statistic of 2612, which indicates that it is 
significantly different from a random model and the excellent R2 statistic of 94% reveals that 
94% of the variance in the data can be explained by the linear model.  Evidently, the linear 
model built on the simulated data is superior to the model built on the measured data. 

 
Figure 6–18 Linear model structure summary report for modeled cooling energy end use during 

occupied periods 

Residual analysis is conducted using a Q-Q plot, which is a plot of the quantiles of two 
distributions against each other.  The pattern of points in the plot is used to compare the two 
distributions.  Linear regression theory dictates that the residuals should be normally distributed 
with zero mean.  Deviations from this assumption are revealed in a Q-Q plot by the deviations of 
the actual residual quantile distribution from the assumed normal distribution. 
The Q-Q plot shows significant deviations of the modeled residuals for high values as shown in 
Figure 6–19, indicating that the residuals exhibit nonuniformity.  The DW tested for over- or 
underfitting and revealed a score of 0.55, which is lower than the critical score of 2.0.  The 
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model is therefore underfitting with positively correlated residuals.  The addition of other 
available regressor variables would likely improve the model quality, similar to the case of the 
measured cooling energy consumption. 

 
Figure 6–19 Q-Q normal plot for residuals of linear model for modeled  

cooling energy end use during occupied periods 

Next, the control limits for this mode and end use are modeled using quantile regression for the 
40th, 50th (median), and 60th quantiles and the computed 40th and 60th quantiles along with the 
mean predictions are plotted against modeled cooling energy consumption in Figure 6–20.  
Predicted control limits and the mean prediction increase almost linearly with the measured 
cooling.  Compared to the measured cooling data case, much less dispersion is observed in the 
simulation data. 
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Figure 6–20 Scatter plot of the quantile (40th and 60th) and linear (mean) regression  

predictions for modeled cooling energy end use during occupied periods 

Next, for the occupied periods, a time series plot of the quantile predictions and the measured 
occupied data is provided in Figure 6–21.  In general, control limits increase during the summer 
and decrease during the shoulder periods and winter; the measured cooling consumption follows 
that trend.  Significantly less dispersion is evident in the time series representation of the 
simulated performance. 

 
Figure 6–21 Time series plot of the quantiles (40th and 60th) and modeled  

cooling energy end use during occupied periods 

Finally, the median quantile prediction is compared against the mean prediction, along with the 
mean prediction against the measured occupied cooling data in Figure 6–22.  The slope of the 
predicted median is slightly below the predicted mean, confirming that the mean is biased 
positively because of high-valued outliers of cooling energy end use.  As before, nonphysical 
negative values of cooling energy can be observed.  Finally, the mean prediction is only slightly 
lower than the measured values. 
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Figure 6–22 Scatter plot of the median versus mean regression predictions (left)  

and of the mean regression prediction versus the modeled cooling data (right)  
for modeled cooling energy end use during occupied periods 

6.5.2 Unoccupied Periods 
Analysis for the modeled unoccupied cooling use is nearly identical to that outlined in Section 
6.5.1, but considers only those modeled data points deemed unoccupied (hours 00:00 to 5:00 and 
18:00 to 23:00 and weekends).  First, PCA is applied to the data.  Significant PCs are selected, as 
shown in Figure 6–23. 

 
Figure 6–23 Individual and cumulative variances explained by PCs for modeled cooling energy 

end use during unoccupied periods 

In Figure 6–24, ambient dry-bulb temperature Todb is in (°F) and Todb.1 in (°C); the PCA finds 
identical loadings for both.  In the dominant PC, high loadings are associated with dry-bulb and 
wet-bulb temperatures (or relative humidity with the opposite sign), then global horizontal 
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insolation, followed by beam horizontal insolation.  As before, the second dominant PC exhibits 
loadings that emphasize all other variables not previously emphasized in the first PC, in 
particular lights, plug loads, and mechanical systems. 

 
Figure 6–24 Loading factors for the two dominant PCs for modeled cooling energy end use 

during unoccupied periods 

The model contains as regressors the individual PCs PC1–4, all four cycle variables, three first-
order interaction terms between the four cycle variables, as well as a large number of first-order 
interaction terms between the PCs and the cycle variables.  Except for 𝐶𝑑,2, each of the 27 model 
variables is significantly different from zero, as confirmed by high Student-t scores and 
associated low Type I errors.  Moreover, the overall model exhibits a very high F-statistic of 
3020, which indicates that it is significantly different from a random model and the R2 statistic of 
95% reveals that 95% of the variances in the data can be explained by the linear model.  In 
summary, the linear model for the unoccupied model cooling periods is slightly superior to the 
linear model for the occupied modeled cooling periods. 

The Q-Q plot in Figure 6–25 shows similar deviations from the theoretical normal distribution as 
the modeled occupied case and the DW score of 0.42 confirms that the model is underfitting with 
positively correlated residuals. 
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Figure 6–25 Q-Q normal plot for residuals of linear model for modeled cooling energy  

end use during unoccupied periods 

Next, the control limits for this mode and end use are modeled using quantile regression for the 
40th, 50th (median), and 60th quantiles and the computed 40th and 60th quantiles; the mean 
predictions are plotted against modeled cooling energy consumption in Figure 6–26.  Predicted 
control limits and the mean prediction increase almost linearly with the measured cooling.  
Compared to the measured cooling data case, much less dispersion occurs in the simulation data. 

 
Figure 6–26 Scatter plot of the quantile (40th and 60th) and linear (mean) regression  

predictions for modeled cooling energy end use during unoccupied periods 
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For the unoccupied periods, a time series plot of the quantile predictions and the measured 
occupied data is prepared (Figure 6–27).  In general, control limits increase during the summer 
and decrease during the shoulder periods and winter, with the measured cooling consumption 
following that trend.  Significantly less dispersion is evident in the time series representation of 
the simulated performance. 

 
Figure 6–27 Time series plot of the quantiles (40th and 60th) and modeled cooling  

energy end use during unoccupied periods 

Finally, the median quantile prediction is compared against the mean prediction, along with the 
mean prediction against the measured occupied cooling data in Figure 6–28.  The predicted 
median follows the predicted mean proportionately, revealing that the mean is not biased for the 
modeled unoccupied data.  Similarly, the mean prediction is proportional to the measured values.  
As before, nonphysical negative values of cooling energy can be observed. 

 
Figure 6–28 Scatter plot of the median versus mean regression predictions (left)  

and of the mean regression prediction versus the modeled cooling data (right)  
for modeled cooling energy end use during unoccupied periods 
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Now that occupied and unoccupied periods have been separately analyzed and control limits 
developed, the LCLs and UCLs can be plotted against the measured cooling energy consumption 
(Figure 6–29).  With 8,760 hours available, the 40th and 60th quantiles follow the seasons as 
intuition would dictate, rising from low values in the spring to peak values around early August. 

 
Figure 6–29 Annual development of LCLs (green) and UCLs (red) based on the modeled 

cooling energy consumption data, along with the actual measured values (blue) 

6.6 Data Logic Application 
With measured and modeled data analyzed to produce UCLs and LCLs throughout the year, the 
last step in determining the overall control limits suggested by this analysis is to apply the 
energy-conservative data logic described in Section 5.4.1.  Note that all nonpositive fits are 
removed, as these values are physically meaningless and will not affect the integrity of the 
models when compared to the actual cooling data. 

Now that the energy-conservative data logic has been applied to the control limits based on 
measured and modeled data, the final LCLs and UCLs can be plotted against the measured 
cooling energy consumption (Figure 6–30. 
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Figure 6–30 Annual development of LCLs (green) and UCLs (red) based on energy-

conservative data logic along with the measured values (blue) 

Time series plots are provided for the month of August in Figure 6–31 and for the second week 
of August in Figure 6–32.  The 60th percentile is consistently predicted above the 40th percentile 
and the measured cooling data are fairly close to the relatively tight control limits. 

 
Figure 6–31 Summer month cooling UCLs (red) and LCLs (green)  

along with measured cooling end use 
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Figure 6–32 Summer week cooling UCLs (red) and LCLs (green) along with measured cooling 

end use 
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7.0 Summary and Next Steps 
7.1 Summary 
The report presented three different but related approaches to determine performance bounds on 
building energy performance for display on an energy information system:  (1) an approach 
based on engineering judgment-informed curve fitting; (2) an approach based on the frequency 
of occurrences; and (3) a quantile regression-based approach.  The process was illustrated using 
electricity consumption for cooling provided by chilled water.  Yet, the same approach can be 
used to analyze other energy end uses such as heating, lighting, plug loads, mechanical systems 
(fans and pumps), and even PV power generation. 

In the first approach, using engineering judgment and manual curve fitting, end-use control 
limits were derived using static lookup-based performance targets, combined with polynomial 
curve-fit models.  These control limits were developed based on a combination of historical end-
use data and as-built energy modeling, with single main effect variables selected for each end 
use, such as solar irradiance for lighting performance.   

In the second frequency-based approach, measured building end-use energy data were used to 
develop empirical frequency distributions for each end use as a function of the dominant 
independent variable determined from visual inspection and a pairwise correlation analysis.  
Appropriate control limits were defined as ranges in which a certain percentage of end use 
consumption has been observed historically (here the central 50% of observations between the 
25th and 75th percentiles), as a function of the dominant independent variable.  The same process 
was then applied to simulated energy end use data sourced from a calibrated building energy 
model. 

Effectively, two sets of upper and lower control limits were generated from measured and 
simulation-based data.  An energy-conservative control logic was then applied to select one set 
of control limits for each situation.  This set of LCLs and UCLs for each energy end use was 
adopted in the Building Agent energy dashboard system for presentation to building operators 
and occupants. 

A more universal methodology that harnesses all the available covariates of an energy end use 
was desired to predict UCLs and LCLs as a function of all the relevant independent variables, 
not just the dominant one.  In essence, a methodology was needed that can be applied to any 
situations where control limits on energy end use are needed, whether a sophisticated monitoring 
systems makes dozens of variables available or whether only a few points are monitored. 

Therefore, in the third quantile regression-based approach, the building energy end use was 
modeled linearly in terms of other end uses, exogenous variables, and weather data, all of which 
were transformed to orthogonal PCs, and the linear models were used to generate control limits 
using quantile regression for the measured and simulated data.  In this report, quantile regression 
was used to predict the 40th and 60th quantiles.  The same energy-conservative control logic was 
then applied to the two sets of quantile regression-based control limits. 

By offering the viewer of the energy dashboard real-time expected range of energy end-use 
consumption in addition to the current instantaneous value, conclusions can be drawn about the 
relative energy intensity.  If the current value falls within the expected range, the building energy 
end use can be considered acceptable, not requiring any action from facility operators or 
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occupants.  Alternatively, if the energy use exceeds the UCL, the dashboard indicates 
opportunities for energy savings.  The greater the departure, the more significant the savings 
potential will likely be. 

The first approach shows engineering judgment-based control limits; the second and third 
approaches present to the viewer the more energy-conservative control limits based on the 
comparison between modeled and observed data. Each method encourages occupants and 
operators to maintain the building’s energy performance in a more energy conservative state. 

7.2 Next Steps 
Four steps lie ahead:   

1. The quantile regression presented in this report will need to be deployed in the RSF 
dashboard system.   

2. Once completed, the dashboard system should be expanded to the ESIF, where metering 
infrastructure has recently been commissioned.   

3. As mentioned throughout the report, adopting control limits representing the 25th and 75th 
percentile may be too loose, and adopting control limits representing the 40th and 60th 
percentile may be too stringent for building occupants to respond actively.  Finding 
control limit values that encourage proactive, energy-conscious behavior would involve 
adopting an initial set of control limits, deploying a survey to the occupants, and then 
adjusting the control limit definition as the outcome of the survey suggests. 

4. Future work is needed to determine the relative performance of physical models deployed 
in real time rather than the statistical models presented here.  For example, beginning 
with a steady-state system model, the measured PV output exceeded the expected range 
for many hours, suggesting the temperature during those hours was lower and thus the 
PV output higher than for the average temperature used to establish the control limits.  
This observation revealed the limitation associated with selecting only one dominant 
variable and suggested more advanced approaches that account for all explanatory 
variables.   

The quantile regression approach presented is one valid pathway to account for all explanatory 
variables. Alternatively, a physical system model may be preferable.  For example, a Monte 
Carlo-based execution of the PVWatts simulation model using available measured data for either 
a historical analysis or predicted variables and probability distributions for unobserved and 
uncertain input variables for a predictive analysis could be pursued.  A predictive application of a 
physical model is discussed further. 

Once the Monte Carlo sampling terminates upon convergence, the numerous possible daily time 
series for each energy end use (or PV production) is analyzed by developing empirical 
cumulative distribution functions for each hour of the day.  Relevant quantiles (e.g., 10%, 25%, 
40%, 60%, 75%, and 90%) are turned into colored lines (see Figure 7–1).  At any time of the 
next day, the actual energy end use will be plotted as a time series on top of these quantile 
envelopes.  The blue line represents the observed end-use energy consumption, plotted on top of 
the three confidence envelopes.  For the example case illustrated, in the last couple of hours the 
actual end use has begun to increase above the 75% expected quantile.   
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Figure 7–1 Predicted quantile time series derived from numerous physical model runs 

executed in the context of a Monte Carlo analysis 
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